
VROOM - Visual Reconstruction over Onboard Multiview

Yajat Yadav
yajatyadav@berkeley.edu

Varun Bharadwaj
varunbharadwaj@berkeley.edu

Jathin Korrapati
jkorr@berkeley.edu

Tanish Baranwal
tekotan@berkeley.edu

Abstract

We introduce VROOM, a system for reconstructing 3D
models of Formula 1 circuits using only onboard camera
footage from racecars. Leveraging video data from the
2023 Monaco Grand Prix, we address video challenges
such as high-speed motion and sharp cuts in camera frames.
Our pipeline analyzes different methods such as DROID-
SLAM, AnyCam, and Monst3r and combines preprocessing
techniques such as different methods of masking, temporal
chunking, and resolution scaling to account for dynamic
motion and computational constraints. We show that Vroom
is able to partially recover the track and vehicle trajectories
in complex environments. These findings indicate the feasi-
bility of using onboard video for scalable 4D reconstruction
in real-world settings.

1. Introduction
1.1. F1

In this project we aim to design an algorithm to recon-
struct a Formula 1 circuit from the onboard cameras of race-
cars. The dataset we use is the onboard of a race with 20
cars racing around a 2.074-mile-long circuit in the princi-
pality of Monaco known as the Monaco Grand Prix.

Figure 1. Example onboard video

The main challenges we encounter when using Formula
1 video data are high-speed 3-D reconstruction and 3-D
reconstruction from multiple views. Formula 1 cars are
known for their high cornering speed, which makes the
problem of 3-D reconstruction difficult because the cars
move quickly through high-detail twists in the circuit. This
is challenging because most 3-D reconstruction methods
depend in some part on optical flow estimation, which is
very difficult in scenes with dynamic motion.

Figure 2. Monaco Track Layout

The specific reason we chose to do the Monaco Formula 1
track is because of the small distance between the cars and
the walls. This yields higher quality optical flow because
of the closer distance between the moving objects and the
camera. Furthermore, the Monaco track has a lot of tight
twists and turns, especially in the second sector s (turns 5-
12), really testing how well the model learns the 3-D recon-
struction from the images.

1.2. SLAM

Simultaneous Localization and Mapping (SLAM) is a
key part in many robotic and autonomous systems, which
requires the system to predict/learn both its surroundings
and where it is within its environment. In our project, we
try and calculate the track layout as well as the location of
the car on the track. We are trying to calculate the racing

1



line, the path that the car takes as it makes it way through
the track. Figure 3 shows a sample racing line that F1 cars
usually try to follow. As we learn the camera extrinsics,
we learn the racing line that the cars must take to minimize
distance traveled while maximizing speed.

Figure 3. Racing Line

1.3. 3D Reconstruction

Along with SLAM, we perform a 3-D reconstruction to
create a dense 3-D point cloud of the entire track. To do
this we combine the depth maps + estimated position-wise
point cloud from the SLAM outputs along with the esti-
mated camera extrinsics. This dense 3-D reconstruction can
be combined with the estimated point clouds from all other
onboard cameras to develop a 3-D reconstruction of all 20
cars and the track through time.

2. Related Work
Traditional SLAM and Structure-from-Motion (SfM)

pipelines have provided reliable camera tracking and 3D
scene reconstruction for decades, leveraging geometric pri-
ors and hand-engineered features. However, the reliance
on well-textured scenes, static environments, and cali-
brated cameras limits their performance in unconstrained
scenarios. Recent years have witnessed a transition to-
ward learning-based SLAM systems that offer improved
robustness, generalization, and scalability. We survey this
evolution, with a focus on monocular and multi-camera
SLAM pipelines, culminating in the latest dynamic-scene
and camera-agnostic models.

2.1. Classical and Early Learning-Based SLAM.

Foundational systems like ORB-SLAM [1, 6] and LSD-
SLAM [3] popularized keyframe-based mapping, bundle
adjustment, and direct methods. ORB-SLAM3 extended

this pipeline to support multi-camera and visual-inertial se-
tups with remarkable accuracy. In parallel, learning-based
methods such as PoseNet [4] and SfM-Learner [11] intro-
duced direct pose and depth regression from images using
deep networks, enabling unsupervised learning from video
via view synthesis. However, early learned approaches
struggled with scale ambiguity, drift, and generalization.

2.2. Differentiable SLAM.

A breakthrough came with DROID-SLAM [9], which
demonstrated that classical SLAM principles could be em-
bedded in an end-to-end differentiable framework. DROID-
SLAM introduces a dense, differentiable bundle adjustment
layer that iteratively refines pose and depth via learned up-
dates. Its recurrent optimization backbone, inspired by op-
tical flow methods like RAFT [8], enabled robust SLAM
performance across monocular, stereo, and RGB-D modal-
ities without retraining. DROID-SLAM outperformed tra-
ditional pipelines on static benchmarks such as TUM RGB-
D and TartanAir, establishing a new standard for learned
SLAM.

2.3. Dynamic Scene SLAM.

While DROID-SLAM is robust in static environments,
its assumptions break down in the presence of dynamic ob-
jects or low-parallax motion. MegaSaM [5] addresses these
limitations by introducing dynamic-scene modeling within
the SLAM loop. It employs monocular depth priors, per-
pixel motion probability masks, and a learned curriculum
that transitions from static to dynamic training. Further-
more, it jointly optimizes intrinsic camera parameters at in-
ference time, allowing for uncalibrated, casually captured
video. MegaSaM demonstrates state-of-the-art pose and
depth estimation on challenging dynamic datasets, outper-
forming optimization-heavy pipelines like Casual-SfM.

2.4. Feed-Forward 4D Reconstruction.

Complementary to optimization-based methods,
MonST3R [10] proposes a feed-forward pipeline that
directly estimates 3D pointmaps per video frame, adapting
the static-scene architecture DUSt3R [2] to dynamic
settings. Rather than explicitly modeling object motion,
MonST3R predicts per-frame 3D structure aligned in a
common coordinate system, with temporal consistency
enforced via a lightweight global alignment step. Trained
on a modest corpus of dynamic scenes, MonST3R offers a
compelling trade-off between simplicity, speed, and robust-
ness, producing temporally coherent 3D reconstructions
even under object motion.

2.5. Generalizing Across Camera Models.

Most SLAM pipelines assume calibrated pinhole cam-
eras, limiting deployment in real-world applications with

2



wide-FOV or unknown intrinsics. UniK3D [7] tackles this
by learning a spherical 3D representation coupled with
a camera-agnostic ray encoding via spherical harmonics.
This disentangles geometry prediction from camera intrin-
sics, enabling monocular 3D reconstruction across fish-
eye, panoramic, and perspective lenses without calibration.
While not a full SLAM system, UniK3D’s universal camera
model offers an important building block for future multi-
camera SLAM and mapping frameworks.

3. Methods

3.1. Data

Using F1 TV, we first obtained 20 onboard videos for
each driver from the 2023 Monaco Grand Prix race. We
decided to focus on the Monaco track for it’s high fidelity
features, like the changing background buildings, as well as
varied turns and elevations in the track. This track would
serve as a robust benchmark ensuring our method can suc-
cesfully reconstruct F1 tracks as well as the cars’ motion in
general.

3.2. Preprocessing

3.2.1 Downsampling

The original video data consisted of 1280x720, 50 FPS
video, with each about 80 seconds long. As we were lim-
ited by compute and hoped to iterate on our method faster,
we downsampled the final resolution to 512x144, as well as
lowered the FPS to 24 FPS. By testing against several, short
5 second chunks of the original video, we found this down-
sampling of resolution and FPS had marginal imapct on the
final reconstruction quality.

3.2.2 Masking

The onboarding camera videos, as seen in Figure 1 were
what we initially used as data input with no changes. How-
ever, the car remains stationary throughout the entire race
with respect to the camera, and this interfered with all the
data-based SLAM methods that we tried. A common issue
was that the learned 3D reconstruction would end up having
a red ”cylinder” throughout the track looking like the car.

To counteract this, we implemented a masking technique
that would block a portion of the frame (i.e. the top 30%
or top 50%). The intuition was removing the stationary car
from the original input data sequence might help reconstruct
the motion better relative to the F1 track which would im-
prove results.

We also experimented with other masking methods, such
as masking just the car (Figure 4), carving out specific
masks, or masking higher/lower fraction of the frame, and
found that masking out the bottom half of the frame (Figure

5) performed the best. Once we discovered this, we added
this masking to our list of preprocessing methods.

Figure 4. Masking Car
Figure 5. Masking Bottom
Half

3.2.3 Video Chunking

Finally, because we were limited by our compute, we had
a tradeoff between feeding longer videos at the expense of
lower FPS in the various methods we tried. With exper-
imentation, we found lowering the FPS too much (lower
than 12) would lead to terrible reconstruction, likely due
to the cars’ extremely fast motion in the world. Thus, we
kept our 24 FPS video but chunked it into overlapping seg-
ments. After some experimentation, we settled on about
5 second chunks, with 1 frame of overlap. So, our final
pipeline consisted of processing these video chunks indi-
vidually and then combining each of the learned camera
motions and point clouds into one (described in section 3.5).

3.2.4 Smarter Chunking

While the naive chunking approach above (just taking 5 sec-
onds at a time) did improve the quality of our reconstruc-
tion, the point cloud would often deteriorate near the turns.
Upon analyzing the outputs, we found this to be the issue
when a turn would get cut off and be present in two con-
tiguous chunks. Thus, informed with this, we revised our
chunking algorithm to only split the video on straight seg-
ments. This way, we ensured that each turn was fed into our
method with enough context so the 3D reconstruction could
accurately capture the curvature of the turn.

3.3. Race Reconstruction

With our processed data, we tried a few different meth-
ods from our literature review to obtain both 1) 3D recon-
structions of the F1 track, and 2) the camera motion in the
track. In this project, we mainly focused on getting these
methods to work using one car’s onboard video; combin-
ing multiple cars’ viewpoints to further refine the 3D recon-
struction and car movements is a future direction that we
hope to explore.

3.3.1 Droid-SLAM

The first method we tried to adapt to was Droid-SLAM.
Droid-SLAM estimates camera poses and scene geometry

3



from videos and utilizes the principles of feature extraction
with a CNN and uses recurrent bundle adjustment to opti-
mize on the data. We thought using Droid-SLAM would
help us in estimating the relative motion of the frame to
generate the trajectory of the car to rebuild the track. Our
intention was to first use Droid-SLAM as a baseline method
to see how well we could generate the reconstruction based
on our data. However, we found that due to our compute
not having GUI support it was difficult to visualize recon-
struction, even for the examples given in the official reposi-
tory. Droid-SLAM from the limited examples we have also
does not reproduce motion, but just the static elements of
the track. Before figuring out the visualization problem, we
got AnyCam and Monst3r working, so we ditched our ef-
forts with Droid-SLAM.

3.3.2 AnyCAM

The next method we focused on adapting for our problem
was AnyCam. AnyCam employs a transformer-based net-
work to output per-frame camera poses and intrinsics. Be-
ing trained on large-scale real-world camera movements
and being much faster at test-time than iterative SLAM
methods, AnyCam seemed like a promising candidate.

3.3.3 Monst3r

The best results we got were using Monst3r, a library
developed to estimate the geometry of scenes with mo-
tion. Monst3r is an addition to Dust3r that computes time-
indexed point cloud and camera motion given a video as an
input. The main issues we faced while using Monst3r was
its high memory usage. We were unable to load the entire
video (even at 1fps) using a NVIDIA H200 132GB VRAM
GPU, and saw subpar results with a longer video but too
low of a FPS (Figure 6). In order to fix this, we had to apply
the masking, downsampling, and chunking described in the
preprocessing section.

After using Monst3r to process each chunk of video, we
then utilized the overlap between chunks in oder to trans-
form one chunk’s camera extrinsics into another camera’s
reference frame. By repeating this process repeatdely with
all chunks, we were able to ”stitch” together the trajecto-
ries and obtain a single camera trajectory. Furthermore, we
adjusted the point-cloud rendering to use these transformed
extrinsics to reconstruct the entire 3D scene for the F1 track.
As desired, the end result was a 3D model for the entire
track, as well as the car’s trajectory.

We next aimed to address the problem of ”closing the
loop”, ie ensuring that combining together each chunk’s re-
construction still leads to a global reconstruction consistent
with the real world. To accomplish this, we began extending
Monst3r to instead process the video in chunks, and then

perform bundle adjustment across chunks in order to pre-
vent each reconstruction from slightly drifting off. Since
Monst3r builds a graph of frames and then performs bun-
dle adjustment with pairs of frames with an edge between
them, we modified Monst3r to instead do the following: for
each chunk, we add edges between frames in the chunk,
perform bundle adjustment to refine the chunk’s reconstruc-
tion. Then, we remove these edges and randomly add edges
between frames in this chunk and frames in other chunks,
and then perform bundle adjustment with these pairs of
frames. The idea with this approach is to alternate be-
tween refining the local, chunk-level reconstruction, and re-
fining the reconstruction’s alignment with the global-level
reconstruction. By repeating this alternating process mul-
tiple times for each chunk, we hoped that the ”drift-off er-
ror” we were noticing happening between distant chunks’
reconstructions would be mitigated. However, we were un-
able to finish up this modification and thoroughly test this in
time, and this would be an interesting future direction to en-
sure our chunk-wise 3D reconstruction approach produces
a globally coherent reconstruction.

Figure 6. Poor Track reconstruction with 3 FPS

4. Results
4.1. AnyCAM

We found that AnyCAM was not a robust SLAM solu-
tion in practice. It performed poorly not only on our F1
dataset, but also on dashcam-style footage resembling the
examples presented in the original paper. Despite exten-
sive sanity checks, including testing on clean, front-facing
driving sequences, AnyCAM consistently failed to recover
plausible camera trajectories. These failures suggest that
the method may be sensitive to scene content or initializa-
tion, and raise concerns about the reproducibility of its re-
ported performance. Figures 7 and 8 illustrate a significant
mismatch between AnyCAM’s predicted camera motion
and the ground truth trajectory, particularly around turns.

4.2. Monst3r

Using the preprocessing and the chunking that we de-
scribed, we were able to get the final circuit map that we
have shown in figure 9. As is clear, the track does not

4



Figure 7. Predicted Camera
Motion by AnyCam Figure 8. Ground Truth Turn

loop back around, and there is still significant work to be
done in order to ”close the loop”. However, each individual
segment’s reconstruction was very close to the ground truth
map, as seen in Figure 10 for turns 3, 4, and 5.

Figure 9. Full Track Reconstruction using Monst3r

Figure 10. Turns 3/4/5 Prediction and Ground Truth

5. Conclusion
Our outputs from Monst3r show significant progress to-

wards creating a 3d reconstruction of the first lap of the
2023 Formula 1 Monaca Grand Prix. However, there is still
signficant progress to be made to fully fix the outputs.

5.1. Future Improvements

The main improvements that we were working on was
to make the global reconstruction better. The main thing
we were trying to do was figure out an efficient keyframe
sampling method that we could then use to do global bundle
adjustment. We began implementing a 2 stage process
where we loop between intrachunk alignment, global bun-
dle adjustment with keyframes only (due to Monst3r’s high
memory usage), followed by more iterations of intrachunk
alignment and global adjustment.

Furthermore, we have onboard cameras from more

than just 1 camera. If we can extend this method to track
the poses and learn the point clouds using multiple views.
Doing this would allow us to generate a reconstruction
of not just the track but also the 20 cars. Furthermore, if
we had multiple views we could get rid of the masking
as other views would be able to tell that the car was not a
static object on the track. This would also be valuable as no
masking would mean we get to use the high-quality optical
flow information of the ground right next to the car to get
stronger estimates of the cameras’ trajectories.

References
[1] Carlos Campos, Rafael Elvira, Juan J Gómez Rodrı́guez,

JMM Montiel, and JD Tardós. Orb-slam3: An accurate
open-source library for visual, visual–inertial, and multimap
slam. IEEE Transactions on Robotics, 37(6):1874–1890,
2021. 2

[2] Qianqian Chen, Yida Wang, and Yebin Zhang. Dust3r: Dual-
scale transformer for sparse-to-dense matching. In CVPR,
2024. 2

[3] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-
slam: Large-scale direct monocular slam. In ECCV, pages
834–849, 2014. 2

[4] Alex Kendall, Matthew Grimes, and Roberto Cipolla.
Posenet: A convolutional network for real-time 6-dof camera
relocalization. In ICCV, pages 2938–2946, 2015. 2

[5] Jiarong Li, Tianyuan Shen, Xiaowei Zhou, and Marc Polle-
feys. Megasam: Accurate, fast and robust structure and mo-
tion from casual dynamic videos. In CVPR, 2024. to appear.
2

[6] Raul Mur-Artal, JMM Montiel, and JD Tardos. Orb-slam:
A versatile and accurate monocular slam system. In IEEE
Transactions on Robotics, volume 31, pages 1147–1163,
2015. 2

[7] Nicola Piccinelli, Gabriel Baatz, and Arno Knapitsch.
Unik3d: Universal camera monocular 3d estimation. arXiv
preprint arXiv:2401.06125, 2025. 3

[8] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In ECCV, pages 402–419, 2020.
2

[9] Zachary Teed and Jia Deng. Droid-slam: Deep visual slam
for monocular, stereo, and rgb-d cameras. In NeurIPS, 2021.
2

[10] Yida Wang, Qianqian Chen, Wei Chen, Yu Zhang, and Yebin
Zhang. Monst3r: A simple approach for estimating geometry
in the presence of motion. arXiv preprint arXiv:2403.04974,
2024. 2

[11] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G
Lowe. Unsupervised learning of depth and ego-motion from
video. In CVPR, pages 1851–1858, 2017. 2

5



A. Additional Figures

Turn 8 Reconstruction Turn 8 Ground Truth

Turn 1 Reconstruction Turn 1 Ground Truth

Turn 18 Reconstruction Turn 18 Ground Truth

Failure Case: Turn 15+16 Reconstruction Turn 15+16 Ground Truth

6


	. Introduction
	. F1
	. SLAM
	. 3D Reconstruction

	. Related Work
	. Classical and Early Learning-Based SLAM.
	. Differentiable SLAM.
	. Dynamic Scene SLAM.
	. Feed-Forward 4D Reconstruction.
	. Generalizing Across Camera Models.

	. Methods
	. Data
	. Preprocessing
	Downsampling
	Masking
	Video Chunking
	Smarter Chunking

	. Race Reconstruction
	Droid-SLAM
	AnyCAM
	Monst3r


	. Results
	. AnyCAM
	. Monst3r

	. Conclusion
	. Future Improvements

	. Additional Figures

